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The stability of steady axisymmetric convection in cylinders heated from below and in- 
sulated laterally is investigated numerically using a mixed finite-difference/Chebyshev 
collocation method to solve the base flow and the linear stability equations. Linear 
stability boundaries are given for radius to height ratios f from 0.9 to 1.56 and for 
Prandtl numbers P r  = 0.02 and P r  = 1. Depending on r and P r ,  the azimuthal 
wavenumber of the critical mode may be rn = 1,2,3, or 4. The dependence of the criti- 
cal Rayleigh number on the aspect ratio and the instability mechanisms are explained 
by analysing the energy transfer to the critical modes for selected cases. In addition 
to these results the onset of buoyant convection in liquid bridges with stress-free 
conditions on the cylindrical surface is considered. For insulating thermal boundary 
conditions, the onset of convection is never axisymmetric and the critical azimuthal 
wavenumber increases monotonically with r . The critical Rayleigh number is less 
then 1708 for most aspect ratios. 

1. Introduction 

A liquid layer heated from below and cooled from above is a basic problem in geo- 
physics and in many heat transfer problems in technical applications. For that reason 
Rayleigh-Bbnard convection is one of the most intensively studied hydrodynamical 
systems. Besides its practical importance it also serves as the most important pattern- 
forming dynamical system in continuous dissipative media, since the symmetry of the 
flow is successively broken when the temperature difference is increased, leading to a 
wealth of different spatio-temporal patterns (see e.g. Koschmieder 1993). 

Here we will be concerned with the Rayleigh-Bknard problem in a finite volume 
bounded laterally by a cylindrical surface on which different boundary conditions for 
the velocity field may be imposed. In particular, we will focus on the secondary transi- 
tion from steady two-dimensional axisymmetric flows to three-dimensional convection 
patterns. 

Compared to the buoyant flow between parallel plates of infinite extent (Busse 1978) 
the cylindrical problem has received less attention, partly due to the complications 
introduced by the lateral boundaries. The primary instability of the motionless 
heat conductive state in the latter system has been well established since the work 
of Charlson & Sani (1970, 1971), Stork & Miiller (1975), Rosenblat (1982), and 
Buell & Catton (1983). The critical Rayleigh number for the first onset of steady 
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convection is independent of the Prandtl number. The azimuthal wavenumber rn of 
the critical mode depends on the aspect ratio r = R/d ( R  is radius, d is height) and 
approaches the value Rael = 1708 asymptotically for r --+ co. Secondary instabilities, 
however, have only been explored for a few exceptional cases. The reason is that 
even the primary flow from which the secondary flow bifurcates is typically three- 
dimensional from the onset of convection. Any further numerical analyses thus 
require full three-dimensional calculations (see e.g. Crespo del Arc0 & Bontoux 1989). 
Exceptions are finite ranges of the aspect ratio for which the primary instability is 
axisymmetric ( m  = 0). High-accuracy numerical calculations of the linear stability of 
these axisymmetric buoyant flows are possible due to normal mode decomposition of 
the azimuthal dependence of the neutral mode. Our investigation will focus on the 
linear stability of these axisymmetric flows in the range 0.9 < r < 1.57. 

The first numerical investigation of the stability of steady axisymmetric flows is 
due to Charlson & Sani (1975). They used a Galerkin method to calculate the basic 
flows, the linear stability of which was then analysed by expanding the disturbances 
into the same set of basis functions as were used for the base states. The analysis, 
however, failed in satisfactorily predicting the secondary instability, since the mode 
truncation was too severe. 

Muller, Neumann & Weber (1984) investigated the flow patterns both numerically 
and experimentally for Pr = 0.02 (liquid metals) and Pr = 6.7 (water). Experimen- 
tally, they found for both Prandtl numbers that the axisymmetric base flows are quite 
stable for r = 1. For Pr = 6.7, for example, the base flow (m = 0) was found to 
be stable up to w 10Ra,l in qualitative agreement with their numerical simulation. 
A second stable solution was found numerically to exist at Ra = 2800 with sym- 
metry rn = 2. This result was also reported by Neumann (1990). A corresponding 
three-dimensional flow, however, was not observed in the experiment. 

Hardin & Sani (1993) investigated the amplitude and the stability properties of 
the primary solution using a slightly nonlinear approximation by retaining only the 
six most significant modes of an expansion in terms of the eigenfunctions of the 
linear stability problem of the conducting state. Even though they expected their 
approach “to appear more likely to suggest potential secondary bifurcations” they 
identified a secondary bifurcation at Raa  = 2850 for r = 1 and P r  = 6.7 at which the 
axisymmetric solution becomes unstable to a stable mode with m = 2. The instability 
of the axisymmetric flow is in contradiction to the results of Muller et al. (1984) and 
Neumann (1990). A similar branching from axisymmetric flow to an m = 2 mode was 
found at Rae2 = 2430 for r = 1 and P r  = 0.02. Note that these values of the second 
critical Rayleigh number Raez are close to the neutral value for the instability of the 
conducting state with respect to the mode m = 2, which is Rael(T = 1,m = 2) = 2493 
(Hardin & Sani 1993). 

Recently, Wagner, Friedrich & Narayanan (1994) numerically simulated the flow 
for r = 1 using similar initial conditions as Neumann (1990). They showed for 
Pr = 6.7 and Ra = 2800 that the decay rate of an initial disturbance with symmetry 
m = 2 is significantly influenced by the grid resolution. For a sufficient number of 
grid points the m = 2 flow at Ra = 2800 decays to a pure axisymmetric flow in 
contradiction to Neumann (1990) and to the numerical result of Muller et al. (1984). 

To date, the numerical data for the secondary buoyant instability in cylinders do 
not cover all aspect ratios and Prandtl numbers. Even for r = 1 and Pr = 6.7 no 
reliable critical values for the instability of the axisymmetric flows are available. 

This work is mainly aimed at calculating the linear stability boundaries of the 
buoyant axisymmetric basic flow in rigid cylinders for aspect ratios 0.9 < r < 1.57. 
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FIGURE 1 .  Geometry and coordinate system. 

The linear two-dimensional equations governing the evolution of three-dimensional 
disturbances of a given azimuthal wavenumber can be solved much more accurately 
to yield the second critical Rayleigh number RaC2 than would be possible within 
a three-dimensional numerical simulation or a weakly nonlinear theory. Moreover, 
the above aspect ratio range can be covered quasi-continuously. An a posteriori 
energy analysis is employed to explain the physics of the secondary instabilities. 
Apart from contributing to the analysis of the bifurcation sequence of Rayleigh- 
Benard convection in cylinders this investigation should also contribute to a better 
understanding of the transitions observed in experiments, where sidewall forcing may 
obscure the ideal patterns. 

2. Statement of the problem 
We consider a liquid volume bounded by a cylindrical container of radius R and 

height d (figure 1) which is heated from below by keeping the top and the bottom of 
the cylinder at constant temperatures TO - AT/2 and TO + AT/2, respectively. TO is 
the mean temperature and the aspect ratio is defined as r = R / d .  Using the scales 
d ,  v / d ,  p o v 2 / d 2 ,  AT and d 2 / v  for length, velocity, pressure, temperature, and time, 
where v and p o  denote the kinematic viscosity and density, the transport equations 
for momentum and heat in the Boussinesq approximation are 

Ra 
Pr 

(8, + U V) U = -VP + AU + -@e, ,  

1 
P r  

(8, + U * V)  0 = W + -A@, 

v . u = o ,  
where U = ( U ,  V ,  W ) ,  P ,  and 0 denote the dimensionless velocity, pressure, and 
temperature fields. 0 is the deviation from the linear conducting profile 

T = To +AT(@ + Ocond); Orond = -z. (2.4) 
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The dimensionless parameters arising are the Prandtl and Rayleigh numbers, de- 
fined as 

V 

K 
P r  = -, 

aATg d3 
Ra = 

KV 

where K is the thermal diffusivity, g the acceleration due to gravity, and a the thermal 
expansion coefficient at constant pressure 

.=--($). 1 

Po P 

The no-slip, no-penetration, and constant-temperature boundary conditions at the 
top and bottom walls ( z  = 2;) are 

u=o=o. (2.6) 

On the circumference of the cylinder we impose no penetration and thermal insulation, 

together with boundary 
no-slip 

u = a,o = 0, (2.7) 

conditions for the tangential velocities. These will be either 

or free-slip conditions 

The free slip conditions 

(a, - t> v = a,w = 0. (2.9) 

apply to a liquid bridge with a non-deformable free surface 
in the absence of the Marangoni effect and other surface forces. Proper symmetry 
conditions on the axis complete the problem. 

3. Numerical solution techniques 
The numerical methods used are the same as applied previously to thermocapillary 

flow instabilities in cylindrical liquid bridges. For details of the schemes, including 
the validation of the codes, the reader is referred to Wanschura et aE. (1995). 

3.1. Basic state 
To calculate the steady axisymmetric flow (V = = a, = 0), we use a stream 
function-vorticity-formulation of (2.1)-(2.3). The resulting system of differential 
equations is approximated by a set of algebraic equations obtained by applica- 
tion of a Chebyshev collocation method in the radial direction and a second-order 
finite-difference scheme in the axial direction. The discretized equations, including 
the boundary conditions, are linearized and solved implicitly by Newton-Raphson 
iteration. 

3.2. Linear stability analysis 
The stability of the non-trivial two-dimensional axisymmetric solution ( U ,  P ,  0) as 
well as that of the conducting motionless state is investigated with linear stability 
theory. Linearizing (2.1)-(2.3) with respect to small perturbations (u, p ,  0) of the base 
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state yields 

Ra 
P r  d,u+ ( u s  V) U + ( U  - V)u = -Vp + Au + -8eZ, 

1 
P r  

dtO+(u.V)O + ( U . V ) O =  w + - A 8 ,  

v - u  = 0. 

The general solution of this linear system of equations is a superposition of normal 
modes 

u(r, 2 )  ( a ) = eEt elrnrp ( p; ) +c.c., (3.4) 

where pn is an integer azimuthal wavenumber and B = CI + io with growth rate a and 
oscillation frequency o. Inserting (3.4) and using the same discretization as for the 
basic state, we obtain a generalized eigenvalue problem 

AX = EBx, (3.5) 

where B is the eigenvalue and x denotes the eigenvector of field entities. A and B 
are the matrix representations of the set of linear volume equations and boundary 
conditions. 

A treatment of the volume equations (3.1)-(3.3) requires the distinction between 
m = 0 and m > 0. For m = 0 we use a stream function-vorticity formulation similar 
to the basic-state calculation. For m > 0 the azimuthal velocity v is eliminated using 
the continuity equation and the eigenvalue problem (3.5) is formulated in terms of the 
primitive variables (u, w, p ,  8). It is solved by inverse iteration. The stability limits are 
found by a zero search with respect to the real part CI of the eigenvalue corresponding 
to the most dangerous mode. 

3.3. Energy analysis 
To investigate the physical mechanisms leading to the instability, we analyse the 
energy transfer between the basic state and the critical mode. The rate of change 
of the (non-dimensional) kinetic energy Ekin is given by the Reynolds-Orr equation 
obtained by multiplying (3.1) with u and integrating over the volume Y’ occupied by 
the fluid. Similarly, a balance for the ‘thermal energy’ E T ,  i.e. a positive measure of 
the neutral temperature field, is obtained by multiplying (3.2) with 8 followed by a 
volume integration. Taking into account the boundary conditions and using Green’s 
theorem, the rate of change of the kinetic and thermal energies can be written as 

02d3r = - D T  + I T  
dE7 - 1 d 

D and D T  are the rates of viscous dissipation and heat diffusion, respectively, 

(3.7) 

1 
D = ( V x ~ ) ~ d ~ r  - 2 I ,  (;) d2r, DT = - P r  1 (V0)2d3r, (3.8) 

=r 
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where Y is the radial surface of the volume. I ,  denotes integrals resulting from the 
interaction between the disturbance u and the basic flow U :  

I” = I”1 + I”2 + I u 3  + Iu4 + I”5 
(3.9) 

=-l aw 

and I T  arises due to convective transport of thermal energy of the basic temperature 
field @ 4- e c o n d :  

(3.10) 

For unstable basic states (a  > 0) and three-dimensional disturbances (rn > 0), it can 
easily be shown analytically that the rate of change of kinetic and thermal energy is 
always positive (a,Ekin > O,dtET > 0). This also holds for oscillating modes because 
all oscillatory terms in the energy balances vanish after the volume integration. 
Therefore, terms on the right-hand side of (3.6) and (3.7) with a positive (negative) 
sign are destabilizing (stabilizing) the base flow. Since D and DT are positive, they 
are stabilizing. However, the sign and the magnitude of I ,  and I T  depends sensitively 
on both the neutral mode and the basic state. 

The energy change rates are calculated on an interpolated equidistant grid using 
a second-order finite-difference scheme. Integrations are carried out using Simpson’s 
rule. Since the energy equations (3.6) and (3.7) must be exactly satisfied by any 
solution of the linear stability problem, we define the relative error in the kinetic 
energy balance as the residual normalized by the largest absolute value of the 
integrals on the right-hand side of (3.6): 

where I G ~  = (Ra/Pr)ZT3. The error for the thermal energy balance ST is defined 
accordingly : 

I-dtET - D T  + IT1 
6 T  := 

max{D~, l l ~ i  12117-21, 1 1 ~ 3 1 )  ’ 

4. Results 
Various convergence tests were performed to assure sufficient numerical accuracy. 

All stability limits presented here are well converged on a grid of 16 radial collocation 
points and 100 axial finite-difference steps. Energy errors were in no case larger than 
Skin  = 2% and ST = 1%, respectively. 

4.1. Instability of the state of rest 
As a first step, the instability of the conducting state was calculated, both to compare 
the critical Rayleigh numbers with those given in the literature and to determine the 
r-region where rn = 0 is the critical mode. 

Figure 2 shows the stability diagram for the conductive basic state using no-slip 
conditions at r = r .  The critical Rayleigh number for the onset of stationary 
convection is plotted versus the aspect ratio for modes with azimuthal wavenumbers 
rn = 0,1, and 2. In the region shown, the critical mode is axisymmetric (rn = 0) within 
two r-intervals. These results are in excellent agreement with those of Hardin et al. 
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FIGURE 2. Curves of neutral stability for the onset of convection with no-slip conditions imposed on 
the cylinder circumference. The horizontal dotted line marks RafT" = 1708. Asterisks: Comparison 
with linear stability results of Hardin et al. (1990). 

Ra, 

r 
FIGURE 3. Curves of neutral stability for the onset of convection with free-slip conditions imposed 

on the cylinder circumference. The horizontal dotted line marks RafT" = 1708. 

(1990) (asterisks in figure 2). The critical Rayleigh number approaches the limit for 
an infinite layer RaZ = 1708 with increasing r (dotted line). More details on the 
asymptotic behaviour can be found in Chen (1992a, b).  

Apart from rigid boundary conditions, artificial 'slip' boundary conditions (8, + 
l/r)u = 0, 8,w = 0 on the surface at r = r have also been employed previously by 
Rosenblat (1982) and Chen (1992a, b). This boundary condition, which expresses the 
vanishing of the vertical vorticity at r = r ,  allows a separation of variables for the 
neutral mode. In contrast, the free-slip (zero-stress) condition requires (8, - l/r)v = 0 
at r = r .  Both boundary conditions are identical only for axisymmetric modes 
(m = 0), in which case u = 0. The free-slip condition on r = r has not been 
considered to date. This condition, however, is relevant to convection in liquid bridges 
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m 0 0 1 2 3 4 5 6  
r 1.22 2.26 0.57 0.95 1.32 1.69 2.06 2.39 

1711 1711 1527 1609 1642 1659 1670 1676 

TABLE 1. Minimum critical Rayleigh numbers Racl with respect to r for different m for the 
instability of the conducting state with free-slip boundary conditions. 

r 
FIGURE 4. Neutral stability curves for the three-dimensional instability of the axisymmetric basic flow 
in the interval 0.9 < r < 1.57 for Pr = 0.02. The dotted line marks the onset of two-dimensional 
convection. Cross: Neumann (1990), asterisk: Hardin & Sani (1993). 

(Wanschura et al. 1995) modelling the floating-zone crystal growth process (Bohm, 
Ludge & Schroder 1994). In the limit of large surface tension, a liquid bridge of 
appropriate volume takes a perfectly cylindrical shape. We find that for such liquid 
bridges with stress-free surfaces, the onset of convection is never axisymmetric (at least 
for I' < 2.5) if Marangoni effects are absent. The corresponding stability diagram is 
shown in figure 3. The minimum values for Racl for different m are given in table 1. 
It is interesting to note that the asymptotic value RaZ = 1708 is approached from 
below in this case. The strict order with respect to m (at least up to m = 6) of the 
different instability domains is remarkable. In agreement with our results for m = 0, 
Chen (1992b) and Rosenblat (1982) have shown that the minima of the critical curves 
touch the line Ra = Ras, if zero vertical vorticity is imposed at r = r .  

In the following, we will focus on rigid boundary conditions and aspect ratios 
in the interval 0.9 < r < 1.57, where the first instability is axisymmetric. We 
calculate the supercritical convective nonlinear axisymmetric basic solutions for this 
case and analyse their stability with respect to three-dimensional disturbances mainly 
for two representative Prandtl numbers, namely P r  = 0.02 (liquid metals) and P r  = 1 
(transparent liquids). 

4.2. Instability of steady axisymmetric convection 
4.2.1. P r  = 0.02 

Some numerical values are given in table 2 (including values for P r  = 1). 
Figure 4 shows the stability diagram for the second instability at P r  = 0.02. 

In 
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P r  = 0.02 P r  = 1 

r Ra,z m Ru,? rn U I , ~  

0.9 2721 2 2619 1 0 
095 2572 2 2961 2 0 
1.0 2463 2 3017 2 0 
1.0896 3911 2 0 
1.1 2336 2 8321 I 0 
1.2 2315 2 12821 1 0 
1.275 2443 2 
1.275 3423 2 
1.3 3506 2 17552 1 0 
1.35 3480 2 
1.4 3368 2 22493 1 0 
1.45 3174 1 
1.47 24928 3 k42.54 
1.5 2831 1 24536 3 k42.26 
1.57 2234 3 23011 4 k45.47 

TABLE 2. Critical Rayleigh numbers R U , ~  for the onset of three-dimensional convection. 

the investigated r -interval, the axisymmetric basic flow becomes unstable to three- 
dimensional stationary (o = 0) disturbances with azimuthal wavenumbers m = 1,2, 
and 3. The basic solution is not unique: two solutions exist that can be transformed 
one into the other by ( 2 ,  U ,  W ,  0 )  --$ (-z,  U ,  -W,  -0) (Liang, Vidal & Acrivos 1969). 
The same symmetry applies to the disturbances. Thus the critical Rayleigh numbers 
are the same for both solutions. 

Our results are in good agreement with previous calculations. Neumann (1990) 
performed a three-dimensional time-dependent simulation of the present problem and 
found the onset of three-dimensional convection with azimuthal symmetry m = 2 for 
P r  = 0.02 and r = 1 at RaC2 = 2525. This value is 2.5% larger than our value of 
Ra,.? = 2463. Hardin & Sani (1993) found RaCz = 2430 for this case using a weakly 
nonlinear approach. This value is 1.3% less than ours. 

In the r-interval where m = 2 is the critical wavenumber, the strong increase of 
the critical Rayleigh number at r = 1.275 is remarkable. For small Pr the thermal 
energy is just a balance between heat conduction ( D T )  and ZT3. It is unimportant 
for the instability mechanism. The kinetic energy balance for r = 1.275 is shown in 
figure 5. The basic solution becomes unstable first at Rn = 2443. For Ra > 2443, 
l u 3  is growing, being responsible for the instability. However, the decrease of the 
work done by buoyant forces Z G r  relative to the dissipation and the stabilization 
due to ZG4 leads to a linearly stable window 2957 < Ra < 3423. For higher Ra, 
the basic flow becomes unstable again. Within this second domain of instability, Z,.3 

seems to saturate, whereas the stabilization due to Ic4 gets much weaker (ZV4 grows). 
Nevertheless, Z r 3  and IGr remain the sources of energy. The particular shape of the 
stability boundary is thus due to a change of the instability mechanism. For r 5 1.275 
the most destabilizing terms are Zc3 and ZGr, while for r Z 1.275 Z,.4 becomes positive 
and contributes to the energy growth, eventually becoming the most destabilizing 
term. 

Iu3 is a measure for the amplification of radial velocity disturbances (u) by axial 
transport ( w )  of axial gradients of the basic radial flow ( d z U ) .  Similarly, Zo4 describes 
the amplification of axial velocity disturbances ( w )  by radial transport (u) of axial 
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FIGURE 5. The rate of change of kinetic energy as a function of Ra for r = 1.275, P r  = 0.02, 
m = 2. All terms are normalized with respect to D. Shaded areas indicate linear stability. 

shear (d,W) (cf. (3.9)). These amplifications lead to instability due to a feedback 
mechanism based on continuity and the finite volume of the cylinder (see also Wan- 
schura et al. 1995). Even though the conventional buoyancy term IGr = (Ra/Pr)ZTs 
contributes to the energy growth at low P r ,  its relative importance diminishes for 
increasing Ra. 

It can be shown that the change of the instability mechanism is related to a radial 
outward shift of the basic-state vortex for increasing r .  Owing to this shift, a region 
of vertical shear appears near the axis ( r  = 0) from which the neutral mode extracts 
its energy via I v 4 .  This has been proved by considering the space dependence (not 
shown) of the integrand of I v 4 .  

While the destabilizing action of Iv4 increases, Iu3 becomes less important when r 
is increased. Owing to the displacement of the basic vortex, the radial shear (d,V) 
entering Zu3 arises in a smaller fraction of the cylinder volume. In addition to that, 
more stabilizing contributions to the integral Iv3 (not shown) appear with increasing 
r ,  which are caused by structural changes of the critical mode. 

In the region where m = 1 and rn = 3 are the critical modes (figure 4), Iu4 is still 
the most destabilizing term and the above-discussed mechanism equally holds. 

4.2.2. Pr = 1 
Figure 6 shows the stability diagram for for Pr = 1. The dependence of the critical 

wavenumber and the critical Rayleigh number on r is different from Pr  = 0.02 
(figure 4). The solid curves for m = 1,2 indicate stationary instabilities, while the 
dashed ones for m = 3,4 represent oscillatory Hopf bifurcations. For Pr = 1, m = 1 
is critical in a wide interval, whereas for Pr  = 0.02, m = 2 is the dominating critical 
wavenumber. A distinguished feature is the turning of the neutral curve for m = 2. 
There exists a linearly stable region of Rayleigh numbers for r = 1.05 - 1.09 within 
which either a decrease or an increase of Ra will cause three-dimensional convection. 

The three-dimensional time-dependent simulation of Neumann (1986) predicts 
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FIGURE 6. Neutral stability curves for the three-dimensional instability of the axisymmetric basic 
flow in the interval 0.9 < r < 1.57 for P r  = 1. The lower dotted line marks the onset of 
two-dimensional convection. The instabilities for m = 3 and rn = 4 are oscillatory. Cross: Neumann 
(1986). 
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three-dimensional convection with m = 1 symmetry for Pr = r = 1 and Ra > 4100. 
This value is only 2.9% smaller than our neutral value (Ra%=' = 4224). However, the 
critical limit for m = 2 is smaller (Ra;=' = 3016). 

Figure 7 shows the thermal energy balance as a function of Ra for r = 1.2 and 
m = 1. The kinetic balance shows no dependence of the different terms on Ra 
and is therefore not important for the instability mechanism. The most destabilizing 
contribution with respect to an increase of Ra is Z T 3  = J,<6wd3r. It is a measure of 
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rlT 
FIGURE 8. Temperature field of the critical mode at cp = 0 for r = 1.2, 

P r  = 1, RaCz = 12821, m = 1. 

the amplification of temperature disturbances (6) due to the axial transport ( w )  of 
axial gradients of the conductive linear temperature profile (dzOcond = -1). This is 
the classical buoyancy term. 

Note that even though this mechanism is the conventional thermal instability, the 
onset Rayleigh number is RaC2 = 12821, a value much larger than the neutral value 
for the instability of the conducting quiescent state, which is Racl = 2424 for m = 1 
(figure 2). The thermal energy balance (figure 7) shows that the strong stabilization 
is due to Z T 2 ,  which is the only stabilizing quantity besides the heat diffusion rate 
D T .  It is a measure of the vertical heat transfer process related to the convective 
deformation 0 of the conducting temperature profile Ocond. 

Since the classical buoyant instability mechanism delays the second thermal insta- 
bility due to the stabilizing influence of the primary temperature field, this instability 
cannot be observed for low Prandtl numbers, For low P r  the primary axisymmetric 
flow becomes unstable at much lower Rayleigh numbers due to an inertial instability, 
which is absent for high Pr .  

Opposite to the case P r  = 0.02, no change in the mechanism of the instability 
occurs when r is increased. Thermal and kinetic energy balances show a similar be- 
haviour throughout the investigated f -interval. For r = 1.46, the instability becomes 
oscillatory with m = 3 being the critical mode. Still, IT3 is the most destabilizing 
contribution to the thermal energy balance; the above described mechanism for m = 1 
is still valid. However, there must be an additional effect that is responsible for the 
onset of oscillations. 

Figures 8 and 9 show the temperature fields at cp = 0 of two typical critical 
modes, a stationary (rn = 1) and an oscillatory ( m  = 3) one. A cold region can 
be identified at r z 0 . 8 , ~  = -0.15 for m = 3 (figure 9), that is not present for 
m = 1. It is generated by a radial outward disturbance flow transporting cold fluid 
from the basic-state temperature distribution (figure 10). The horizontal disturbance 
temperature distribution (figure 9) in turn is unstable and tends to create a radial 
inward flow for z < 0, which, however, would be opposite to the present disturbance 
velocity field. This frustration is resolved by a clockwise azimuthal rotation of the 
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FIGURE 9. Temperature field of the critical mode at cp = 0 for r = 1.47, P r  = 1, R U , ~  = 24928, 
rn = 3.  The dimensionless oscillation frequency is w,? = 42.5. 
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FIGURE 10. Temperature field of the axisymmetric basic state (0 + OCond) for r = 1.47, P r  = 1, 

Ra = RaCz = 24928. 

critical mode. Owing to this rotation, an azimuthal phase shift of the temperature 
minima arises relative to the flows that generate them. The phase shift can be seen 
in figure 11 showing a horizontal cross-section at z = -0.3 viewed from above. The 
maximum radial outward flow occurs at a different azimuthal angle (full line in 
figure 1lb) than that of the corresponding cold region (dotted line); the frustration is 
resolved. The same arguments (with different signs) hold for the temperature maxima 
generated by radial inward flow. Oscillations are absent for m = 1, because the critical 
mode involves no significant radial outward flow that could generate a cold spot. 
The structure of the neutral mode is qualitatively the same along both oscillatory 
instability curves, m = 3 and rn = 4. 



412 M .  Wanschura, H.  C. Kuhlmann and H .  J.  Rath 

X 

(b) 
I .o 

0.5 

Y O  

-0.5 

-1 .o 

X 

FIGURE 11. Disturbance flow (a) and temperature (b)  fields of the critical mode in an axial 
cross-section at z = -0.3 for r = 1.47, P r  = 1, Ra,- = 24928, m = 3. The full line in (b)  indicates 
the azimuthal position of maximum radial outward flow, the dotted line indicates that of the 
temperature minimum. 
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FIGURE 12. Growth rate c1 of the mode m = 2 as a function of Ra for P r  = 6.7, r = 1. 

4.2.3. Pr = 6.7 

For r = 1 and Pr = 6.7, Hardin & Sani (1993) within their weakly nonlinear 
approach found a stationary bifurcation to an m = 2 mode at Ra,2 = 2850. We find 
m = 2 to be linearly stable for these parameters. However, the growth rate of the 
m = 2 mode has a negative maximum at Ra = 3216 (figure 12). This behaviour is 
qualitatively identical to that for Pr = 1 where the maximum takes a positive value 
rendering m = 2 unstable in a small Rayleigh number interval. If the instability is 
supercritical for these parameters a weakly nonlinear three-dimensional state may 
result. For P r  = 6.7, we find that the basic flow becomes unstable first to a mode 
with symmetry WI = 1 at RuL2 = 10 134 in qualitative agreement with the experimental 
result of Miiller et al. (1984) ( R U , ~  x lORa,, = 22600). 

5.  Concluding remarks 
The instability of axisymmetric Rayleigh-BCnard convection in a cylindrical layer 

depends qualitatively on the Prandtl number. For large Prandtl numbers (here 
Pr = 1 and Pr = 6.7) the two-dimensional flow becomes unstable due to the 
classical thermal instability mechanism. The temperature field of the axisymmetric 
base state acts to stabilize non-axisymmetric disturbances. Thus the two-dimensional 
flow remains linearly stable up to large Rayleigh numbers, e.g. Rac2(T = 1.4,Pr = 
l , m  = 1) = 22493. At these high Rayleigh numbers, the basic two-dimensional 
flow of low Prandtl number fluids involves high-inertia velocity fields, which become 
unstable prior to thermal instability. The mechanism is inertial in character. The 
maximum Rayleigh number for which the flow is two-dimensional is approximately 
Ra,z(T = 1.3, P r  = 0.02, m = 2) = 3506. Thus there must be some transition range at 
intermediate Prandtl numbers within which the instability mechanism changes from 
inertial to thermal. 

The present results for Pr = 0.02 are in good agreement with previous numerical 
work (Neumann 1990; Hardin & Sani 1993). For Pr = 6.7 and r = 1, however, 
we have shown that the axisymmetric flow is linearly stable with respect to m = 2 
modes. This supports the recent numerical simulation of Wagner et al. (1994) and it 
is in agreement with the experiments by Muller el al. (1984). We conclude that the 
previous calculations of Miiller et al. (1984), Neumann (1990) and Hardin & Sani 
(1993), who either found a nonlinear convective state with m = 2 at Ra = 2800 or a 
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supercritical bifurcation to an m = 2 mode, are in error. The present linear stability 
calculation cannot preclude the existence of a finite-amplitude m = 2 mode. However, 
since Wagner et al. (1994) proved the exponential decay of an m = 2 disturbance 
from a finite initial amplitude for Ra = 2800, there is evidence for the absence of 
such a state. Given the growth rate dependence of the m = 2 mode on Ra (figure 
12) together with the stability diagram for Pu = 1 (figure 6), we anticipate that the 
linear stability diagram for P r  = 6.7 is topologically similar to that for P r  = 1. Thus 
the reason for the numerical difficulties encountered by some previous investigations 
for r = 1 becomes clear. On increasing Ra for the constant aspect ratio r = 1 the 
linearly unstable range for m = 2 is just missed. For a slightly smaller aspect ratio 
the basic flow should become unstable to an m = 2 mode, although the amplitude 
can be expected to remain small. 

The authors are very grateful to M. Prange for running the numerical program, 
for collecting the data and for stimulating discussions. We are also indebted to V. M. 
Shevtsova for providing the program for the energy balance computations. This work 
was supported by DFG under grant number Ku896/2. 
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